

| Date Planned : / /         | Daily Tutorial Sheet - 12 | Expected Duration : 90 Min |  |  |
|----------------------------|---------------------------|----------------------------|--|--|
| Actual Date of Attempt :// | Level - 3                 | Exact Duration :           |  |  |

| *142. | Which | of the | following | statement | (s) | is/ | 'are | correct? |
|-------|-------|--------|-----------|-----------|-----|-----|------|----------|
|-------|-------|--------|-----------|-----------|-----|-----|------|----------|

- (A) A photon is a positively charged nuclear particle
- **(B)** A photon is a particle of light energy
- (C) A photon is a quantum of light
- (D) A photon is a bundle of energy of definite magnitude but not necessarily light energy
- \*143. Rutherford's  $\alpha$  -scattering experiment led to the following conclusions:
  - (A) atom has largely empty space
  - (B) the centre of the atom has positively charged nucleus
  - (C) the size of the nucleus is very small as compared to the size of the atom
  - **(D)** the electrons revolve around the nucleus
- \*144. Bohr's atomic model is based on the following postulates:
  - (A) an atom consists of nucleus
  - **(B)** an electron can rotate only in certain energy levels
  - (C) an electron remains moving with continuous loss of energy
  - (D) an electron remains moving without continuous loss of energy
- \*145. The wavelength of a spectral line for an electronic transition is inversely related to:
  - (A) the number of orbitals undergoing the transition
  - **(B)** the nuclear charge of an atom
  - **(C)** the difference in energy levels involved in the transition
  - **(D)** the velocity of the electron undergoing the transition
- \*146. Which of the following species are expected to give line spectrum similar to that of H-atom?
  - **(A)**  $He^{+}(g)$
- **(B)**  $Li^{2+}$
- (C) D(g)
- **(D)**  $Be^{3+}$

- \*147. Which of the following statement(s) is/are correct?
  - (A) Electrons in motion behave as if they are waves
  - **(B)** s-orbital is non-directional
  - (C) an orbital can accommodate a maximum of two electrons with parallel spins
  - (D) the energies of the various sub-levels in the same shell are in order s > p > d > f